InSAR observations of 2007 Tanzania rifting episode reveal mixed fault and dyke extension in an immature continental rift

نویسندگان

  • Juliet Biggs
  • Falk Amelung
  • Noel Gourmelen
  • Timothy H. Dixon
  • Sang-Wan Kim
چکیده

S U M M A R Y In the early stages of continental rifting, extension takes place by normal faulting, while in mature continental rifts dyke intrusion dominates. Little is known about the nature of the transition between fault-controlled and dyke-controlled extension or about the processes in an intermediate setting. Here, we present observations of the temporal and spatial evolution of surface displacements during the 2007 July 14–August 4 rifting episode in Northern Tanzania, an immature section of the East African Rift. The ground deformation initiated with subsidence that can be attributed to ∼40 cm of normal motion on a NE striking fault. Following July 17, deformation was dominated by the intrusion of ∼7-km-long dyke. Dyke opening increased gradually to a total of ∼2.4 m. From July 21, the collapse of a shallow graben above the fault dominated the near-field displacements. Comparison to the 2007 Dabbahu dyke, Afar, which occurred in a more mature rift, shows an order-of-magnitude scale difference in dyke length. Using numerical models of dyke propagation, we attribute this to the size and depth of the magma chamber; in immature rifts the thick crust and slow spreading rate favour small, deep magma chambers, forming short, buried dykes, whereas in mature rifts the thinner crust and faster spreading rate favour large, shallow magma chambers and long, erupting dykes. Observing the pattern of active processes in the East African Rift is key to understanding the development of rift systems and passive margins elsewhere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Midcontinent Rift System

One of the most prominent features on gravity and aeromagnetic maps of the United States is a series of major, generally linear anomalies that extend from central Kansas to Lake Superior and then turn southward into central Michigan (Figures 1, 2). This system of anomalies clearly reflects major geological features, and as such it must represent a very significant episode in the history of the ...

متن کامل

Control of rheological stratification on rifting geometry: a symmetric model resolving the upper plate paradox

Numerical experiments reproduce the fundamental architecture of magma-poor rifted margins such as the Iberian or Alpine margins if the lithosphere has a weak mid-crustal channel on top of strong lower crust and a horizontal thermal weakness in the rift center. During model extension, the upper crust undergoes distributed collapse into the rift center where the thermally weakened portion of the ...

متن کامل

Plateau collapse model for the Transantarctic Mountains–West Antarctic Rift System: Insights from numerical experiments

The high elevation and considerable length of the Transantarctic Mountains have led to speculation about their origin. To date, no model has been able to adequately reconcile the juxtaposition of the high, curvilinear Transantarctic Mountains with the adjacent West Antarctic Rift System, a broad region of thin extended continental crust exhibiting wide rift characteristics. We present a fi rst-...

متن کامل

Deformation during the 1975–1984 Krafla rifting crisis, NE Iceland, measured from historical optical imagery

[1] We measure the displacement field resulting from the 1975–1984 Krafla rifting crisis, NE Iceland, using optical image correlation. Images are processed using the COSI-Corr software package. Surface extension is accommodated on normal faults and fissures which bound the rift zone, in response to dike injection at depth. Correlation of declassified KH-9 spy and SPOT5 satellite images reveals ...

متن کامل

Why do continents break-up parallel to ancient orogenic belts?

The frequently observed parallelism between rifts and the pre­ existing orogenic fabric of continents suggests that the inherited tectonic fabric of the lithosphere influences the rupture of continents. We propose that the existence of a pervasive fabric in the lithospheric mantle induces an anisotropie strength in the lithosphere, that guides the propagation of continental rifts. Subcrustal ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009